Inorganic Chemistry

Titanium(II) and Titanium(III) Tetrahydroborates. Crystal Structures of [Li(Et₂O)₂][Ti₂(BH₄)₅(PMe₂Ph)₄], Ti(BH₄)₃(PMe₂Ph)₂, and Ti(BH₄)₃(PEt₃)₂

Dean M. Goedde and Gregory S. Girolami*

School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801

Received September 11, 2005

The molecular structures of the titanium(III) borohydride complexes Ti(BH₄)₃(PEt₃)₂ and Ti(BH₄)₃(PMe₂Ph)₂ have been determined. If the BH₄ groups are considered to occupy one coordination site, both complexes adopt distorted trigonal bipyramidal structures with the phosphines in the axial sites; the P-Ti-P angles deviate significantly from linearity and are near 156°. In both compounds, two of the three BH₄ groups are bidentate and one is tridentate. The deduced structures differ from the one previously described for the PMe₃ analogue $Ti(BH_4)_3(PMe_3)_2$, in which two of the tetrahydroborate groups were thought to be bound to the metal in an unusual "side-on" (η^2 -B,H) fashion. Because the PMe₃, PEt₃, and PMe₂Ph complexes have nearly identical IR spectra, they most likely have similar structures. The current evidence strongly suggests that the earlier crystal structure of Ti(BH₄)₃(PMe₃)₂ was incorrectly interpreted and that these complexes all adopt structures in which two of the BH4 groups are bidentate and one is tridentate. The synthesis of the titanium(III) complex Ti(BH₄)₃(PMe₂Ph)₂ affords small amounts of a second product: the titanium(II) complex [Li(Et₂O)₂][Ti₂(BH₄)₅(PMe₂Ph)₄]. The [Ti₂(BH₄)₅(PMe₂Ph)₄]⁻ anion consists of two Ti(η^2 -BH₄)₂(PMe₂Ph)₂ centers linked by a bridging η^2 , η^2 -BH₄ group that forms a Ti···(μ -B)···Ti angle of 169.9(3)°. Unlike the distorted trigonal bipyramidal geometries seen for the titanium(III) complexes, the metal centers in this titanium(II) species each adopt nearly ideal tbp geometries with P-Ti-P angles of 172-176°. All three BH₄ groups around each Ti atom are bidentate. One of the BH₄ groups on each Ti center bridges between Ti and an ethercoordinated Li cation, again in an η^2 , η^2 fashion. The relationships between the electronic structures and the molecular structures of all these titanium complexes are briefly discussed.

Introduction

We have previously reported that the titanium(III) tetrahydroborate complex Ti(BH₄)₃(Et₂O)₂¹ reacts with tertiary phosphines to afford diadducts of the type Ti(BH₄)₃(PR₃)₂, where PR₃ is PMe₃ (1), PEt₃ (2), or PMe₂Ph (3).^{2,3} At that time, we carried out a crystallographic study of Ti(BH₄)₃-(PMe₃)₂, which suggested that two of the tetrahydroborate groups were bound to the metal in an unprecedented "sideon" fashion⁴ involving three-center Ti···H−B interactions. The structure was similar to those in molecular dihydrogen complexes, in certain transition metal silane complexes, in compounds containing agostic M···H−C bonds, and to the transition state thought to be responsible for alkane activation processes.⁵

Three-center M···H–B interactions had been described previously in several transition metal carborane complexes.^{6,7} Following our study of Ti(BH₄)₃(PMe₃)₂, other examples of "side-on" M···H–B interactions have been discovered, most notably those in catecholborane and pinacolborane complexes such as Cp₂Ti(HBcat)₂,⁸ Cp'Mn(HBcat)(CO)₂,⁹ Cp₂Ti(HBcat)-(PMe₃),¹⁰ and Ru(HBpin)(H₂Bpin)H(PCy₃)₂.¹¹

Although the locations of the hydrogen atoms in $Ti(BH_4)_3$ -(PMe₃)₂, as deduced from the X-ray diffraction experiment,

(6) Love, R. A.; Bau, R. J. Am. Chem. Soc. 1972, 94, 8274-8276.

^{*} To whom correspondence should be addressed. E-mail: girolami@scs.uiuc.edu.

⁽¹⁾ Franz, H.; Fusstetter, H.; Nöth, H. Z. Anorg. Allg. Chem. 1976, 427, 97–113.

⁽²⁾ Jensen, J. A.; Girolami, G. S. J. Chem. Soc., Chem. Commun. 1986, 1160–1162.

⁽³⁾ Jensen, J. A.; Wilson, S. R.; Girolami, G. S. J. Am. Chem. Soc. 1988, 110, 4977-4982.

⁽⁴⁾ We use the term "side on" to be consistent with the descriptions in our 1986 and 1988 papers. Other nomenclature for such structures is now preferred (η²-B,H), based largely on work relating to metal alkane complexes; See Hall, C.; Perutz, R. H. *Chem. Rev.* **1996**, *96*, 3125– 3146.

⁽⁵⁾ McGrady, G. S.; Guilera, G. Chem. Soc. Rev. 2003, 32, 383–392 and references therein.

⁽⁷⁾ Baker, R. T.; King, R. E.; Knobler, C.; O'Con, C. A.; Hawthorne, M. F. J. Am. Chem. Soc. **1978**, 100, 8266–8267.

strongly suggested the side-on structure A, we considered

an alternative structural model in which the apparent presence of two side-on BH_4 groups was an artifact of disordering of a bidentate and a tridentate tetrahydroborate ligand across the crystallographic mirror plane, and that the actual molecular structure was structure **B**. For several reasons (to be discussed below), we concluded that structure **B** was less consistent with the data.

Some years after our work, Volatron and co-workers¹² carried out a theoretical study of the structure of $Ti(BH_4)_3$ -(PMe₃)₂. They found that the side-on structure **A** was not the ground state and that instead the lowest-energy geometry was structure **B**. The energy of structure **A** was calculated to be some 40 kcal/mol higher than that of structure **B**; furthermore, structure **A** was not even a local minimum on the potential energy surface. Their results extended theoretical calculations on $Ti(BH_4)_3L_2$ molecules previously reported by Rankin et al.¹³

Volatron's theoretical results, combined with residual doubts about the interpretation of our original X-ray work, prompted us to undertake a reinvestigation of the nature of the BH₄ binding modes in these complexes. We now report single-crystal X-ray diffraction studies of Ti(BH₄)₃(PEt₃)₂, Ti(BH₄)₃(PMe₂Ph)₂, and the novel Ti^{II} complex [Li(Et₂O)₂]-[Ti₂(BH₄)₅(PMe₂Ph)₄]. A summary of the relationship between the electronic structures and the molecular structures of these complexes is also presented.

Results

Synthesis and Characterization of $Ti(BH_4)_3(PR_3)_2$ Complexes. Treatment of $Ti(BH_4)_3(Et_2O)_2^1$ with 2 equiv of PEt₃ or PMe₂Ph, followed by crystallization from pentane/diethyl ether at -20 °C, gives blue crystals of the known³ titanium-(III) complexes $Ti(BH_4)_3(PEt_3)_2$ (2) and $Ti(BH_4)_3(PMe_2Ph)_2$ (3). As previously noted, strong infrared absorption bands at 2410, 2367, and 2115 cm⁻¹ in the spectra of all three compounds indicate that both molecules contain at least one bidentate BH₄ group. A band at 2538 cm⁻¹ signals the

Table 1. Crystallographic Data for $Ti(BH_4)_3(PEt_3)_2$ (2), $Ti(BH_4)_3(PMe_2Ph)_2$ (3), and $[Li(Et_2O)_2][Ti_2(BH_4)_5(PMe_2Ph)_4]$ (4)

	$TiB_{3}P_{2}C_{12}H_{42} \\$	$TiB_{3}P_{2}C_{16}H_{34}$	$Ti_2B_5P_4C_{40}H_{84}O_2Li$
T, ℃	-75	-75	-75
space group	$P\overline{1}$	C2/c	$P2_{1}/c$
<i>a</i> , Å	8.0034(13)	14.4241(16)	12.4470(5)
<i>b</i> , Å	18.148(3)	12.7139(22)	18.1710(8)
<i>c</i> , Å	30.347(8)	13.3805(24)	24.0671(10)
α, deg	86.89(2)	90	90
β , deg	83.636(12)	116.380(12)	98.0380(10)
γ, deg	84.104(12)	90	90
V, Å ³	4353.5(15)	2198.3(6)	5389.9(4)
Ζ	8	4	4
$M_{\rm r}$	328.73	368.70	977.74
$\rho_{\rm calcd}$, g cm ⁻³	1.003	1.114	1.082
λ, Å	0.71073	0.71073	0.71073
$\mu_{\rm calcd},{\rm cm}^{-1}$	5.26	5.29	4.43
transmissn coeff	0.791 - 0.897	0.741 - 0.894	0.844 - 0.942
R_{F}^{a}	0.0714	0.0272	0.0927
$R_{\rm wF}^b$	0.2113	0.0694	0.1993

^{*a*} $\mathbf{R}_{\mathrm{F}} = \sum(||F_{\mathrm{o}}| - |F_{\mathrm{c}}||) / \sum |F_{\mathrm{o}}|$ for reflections with $F_{\mathrm{o}}^{2} > 2 \sigma(F_{\mathrm{o}}^{2})$. ^{*b*} $\mathbf{R}_{\mathrm{wF}} = [\sum w(F_{\mathrm{o}}^{2} - F_{\mathrm{c}}^{2})^{2} / \sum w(F_{\mathrm{o}}^{2})^{2}]^{1/2}$ for all reflections.

presence of another type of BH₄ binding mode.^{14–16} This IR band could arise from a tridentate BH₄ group, but the X-ray crystal structure of the PMe₃ adduct $Ti(BH_4)_3(PMe_3)_2$ led us to conclude in 1988 that the IR band was due to the presence of the two side-on BH₄ groups.

In our 1988 study, X-ray diffraction data for either **2** or **3** could not be obtained because we were unable to mount crystals of these highly reactive and low-melting compounds in capillaries. In the present reinvestigation, we have been able to collect data from crystals of $Ti(BH_4)_3(PEt_3)_2$ and $Ti-(BH_4)_3(PMe_2Ph)_2$ by avoiding the use of capillaries and instead mounting the crystals at low temperatures on glass fibers with chilled Paratone oil. Crystal data for both compounds are given in Table 1. Tables 2 and 3 give selected bond lengths and angles for the two compounds.

Unlike molecules of the PMe₃ complex $Ti(BH_4)_3(PMe_3)_2$, which reside on crystallographic mirror planes,³ molecules of the PEt₃ complex **2** reside on general positions within the unit cells. The asymmetric unit contains four independent molecules, all four of which have very similar structures.

We will begin our discussion by focusing on molecule 1 because it was the best behaved. If the BH₄ groups in Ti-(BH₄)₃(PEt₃)₂ are each considered to occupy one coordination site, the five ligands about the Ti center in molecule 1 describe a distorted trigonal bipyramid with the phosphines in the axial sites (Figure 1). The structural feature of greatest interest is as follows: of the three BH₄ groups in **2**, *one is clearly tridentate and two are clearly bidentate*, as judged both from the Ti•••B distances and from the locations of the hydrogen atoms. The hydrogen atoms were readily apparent in the difference maps, and their positions were refined subject to light restraints (see Experimental Section).

The average $\text{Ti} \cdot \cdot \cdot \text{B}(\eta^2)$ distance of 2.448(5) Å is longer than the tridentate $\text{Ti} \cdot \cdot \cdot \text{B}(\eta^3)$ distance of 2.194(5) Å by 0.254

⁽⁸⁾ Muhoro, C. N.; He, X.; Hartwig, J. F. J. Am. Chem. Soc. 1999, 121, 5033-5046.

⁽⁹⁾ Schlecht, S.; Hartwig, J. F. J. Am. Chem. Soc. 2000, 122, 9435–9443.
(10) Muhoro, C. N.; Hartwig, J. F. Angew. Chem., Int. Ed. Engl. 1997, 36,

<sup>1510–1512.
(11)</sup> Montel-Palma, V.; Lumbierres, M.; Donnadieu, B.; Sabo-Etienne, S.; Chaudret, B. J. Am. Chem. Soc. 2002, 124, 5624–5625.

⁽¹²⁾ Volatron, F.; Duran, M.; Lledos, A.; Jean, Y. Inorg. Chem. 1993, 32, 951–954

⁽¹³⁾ Dain, C. J.; Downs, A. J.; Goode, M. J.; Evans, D. G.; Nicholls, K. T.; Rankin, D. W. H.; Robertson, H. E. J. Chem. Soc., Dalton Trans. 1991, 967–977.

⁽¹⁴⁾ Atwood, J. L.; Rogers, R. D.; Kutal, C.; Grutsch, P. A. J. Chem. Soc., Chem. Commun. 1977, 593.

⁽¹⁵⁾ Corey, E. J.; Cooper, N. J.; Canning, W. M.; Lipscomb, W. N.; Koetzle, T. F. Inorg. Chem. 1982, 21, 192–199.

⁽¹⁶⁾ Marks, T. J.; Kolb, J. R. Chem. Rev. 1977, 77, 263-293.

Table 2. Important Bond Lengths (Å) and Angles (deg) for $Ti(BH_4)_3(PEt_3)_2$ (2)

	Bond L	engths	
Ti1-P1	2.6271(14)	P2-C21	1.830(4)
Ti1-P2	2.6244(14)	P2-C23	1.869(4)
Ti1•••B1	2.191(5)	P2-C25	1.827(4)
Ti1B2	2.446(5)	B1-H11	1.10(2)
Ti1•••B3	2,449(5)	B1-H12	1.11(2)
Ti1-H11	2.03(3)	B1-H13	1.10(2)
Ti1-H12	2.15(3)	B1-H14	1.08(2)
Ti1-H13	2.01(3)	B2-H21	1.16(2)
Ti1-H21	1.98(3)	B2-H22	1.16(2)
Ti1-H22	1.97(3)	B2-H23	1.13(2)
Ti1-H31	2.03(3)	B2-H24	1.13(2)
Ti1-H32	1.97(3)	B3-H31	1.10(2)
P1-C11	1.816(5)	B3-H32	1.12(2)
P1-C13	1.846(5)	B3-H33	1.08(2)
P1-C15	1.838(5)	B3-H34	1.10(2)
	Bond A	Ingles	
P1-Ti1-P2	155.71(5)	Ti1-B2-H23	124.8(15)
B1-Ti1-B2	118.71(19)	Ti1-B2-H24	122.1(15)
B2-Ti1-B3	123.10(17)	Ti1-B3-H33	126.9(16)
B1-Ti1-B3	118.19(19)	Ti1-B3-H34	120.7(15)
P1-Ti1-B1	98.90(14)	H11-B1-H12	106.0(14)
P1-Ti1-B2	86.12(12)	H12-B1-H13	108.6(14)
P1-Ti1-B3	84.80(12)	H11-B1-H13	108.0(14)
P2-Ti1-B1	105.37(14)	H11-B1-H14	111.5(14)
P2-Ti1-B2	83.13(12)	H12-B1-H14	110.9(14)
P2-Ti1-B3	82.97(13)	H13-B1-H14	111.7(14)
H11-Ti1-H12	49.8(10)	H21-B2-H22	105.7(13)
H12-Ti1-H13	50.6(10)	H22-B2-H23	109.7(13)
H11-Ti1-H13	52.5(10)	H21-B2-H23	109.6(13)
H21-Ti1-H22	55.8(11)	H21-B2-H24	109.3(13)
H31-Ti1-H32	52.9(11)	H22-B2-H24	109.2(13)
Ti1-P1-C11	117.33(17)	H23-B2-H24	113.1(13)
Ti1-P1-C13	109.48(16)	H31-B3-H32	107.4(13)
Ti1-P1-C15	118.48(17)	H32-B3-H33	109.1(13)
Ti1-P2-C21	116.72(15)	H31-B3-H33	111.0(13)
Ti1-P2-C23	111.36(14)	H31-B3-H34	109.3(13)
Ti1-P2-C25	117.18(15)	H32-B3-H34	107.6(13)
Ti1-B1-H14	175.9(17)	H33-B3-H34	112.3(14)

Table 3. Important Bond Lengths (Å) and Angles (deg) for $Ti(BH_4)_3(PMe_2Ph)_2$ (3)

Bond Lengths				
Ti-P	2.5950(4)	B1-H11	1.18(1)	
Ti•••B1	2.450(2)	B1-H12	1.21(1)	
Ti•••B2	2.195(3)	B1-H13	1.12(2)	
Ti-H11	1.91(2)	B1-H14	1.10(2)	
Ti-H12	1.87(1)	B2-H21	1.12(1)	
Ti-H21	1.95(3)	B2-H22	1.12(1)	
Ti-H22	1.95(4)	B2-H23	1.12(1)	
Ti-H23	1.83(3)	B2-H24	1.01(3)	
Bond Angles				
P-Ti-P'	155.68(2)	Ti-B1-H14	128(5)	
B1-Ti-B2	119.24(4)	Ti-B2-H24	180.000 ^a	
B1-Ti-B1'	121.52(8)	H11-B1-H12	97.1(9)	
P-Ti-B1	83.22(4)	H12-B1-H13	110.6(10)	
P-Ti-B1'	84.97(4)	H11-B1-H13	111.1(10)	
P-Ti-B2	102.162(10)	H11-B1-H14	112.2(10)	
H11-Ti-H12	56.6(6)	H12-B1-H14	109.8(10)	
H21-Ti-H22	51.8(10)	H13-B1-H14	114.8(11)	
H22-Ti-H23	56.1(9)	H21-B2-H22	99(2)	
H21-Ti-H23	48.7(11)	H22-B2-H23	105(2)	
Ti-P-C1	115.87(4)	H21-B2-H23	88(2)	
Ti-P-C7	113.74(6)	H21-B2-H24	117.6(14)	
Ti-P-C8	114.18(6)	H22-B2-H24	118(2)	
Ti-B1-H13	116.7(8)	H23-B2-H24	124(2)	

^a Imposed by symmetry.

Å, which is near the ~0.3 Å difference in ionic radii for BH₄ in these bonding modes.¹⁷ The B(η^2)-Ti-B(η^3) angles average 118.5(2) ° whereas the B(η^2)-Ti-B(η^2) angle is

Figure 1. Molecular structure of $Ti(BH_4)_3(PEt_3)_2$ (2). Ellipsoids are drawn at the 30% probability level, except for hydrogen atoms, which are represented as arbitrarily sized spheres.

slightly larger at 123.1(2)°. The latter angle may be larger, owing to steric repulsion between the two η^2 -BH₄ groups, which bond to the metal through Ti–H contacts that all lie in the trigonal plane. The Ti–H_b distances for the η^2 - and η^3 -BH₄ groups are 1.99(3) and 2.07(3) Å, respectively. The B–H distances average 1.14(2) and 1.09(2) Å for the η^2 - and η^3 -BH₄ groups, respectively.

Although the two phosphine ligands occupy the axial sites of the trigonal bipyramid, the P–Ti–P angle of 155.73(4)° deviates significantly from linearity. That the P–Ti–P angle is bent is a consequence of electronic factors (see below); the direction of bending can be explained on the basis of steric effects. Specifically, the two phosphine ligands are bent away from the tridentate BH₄ group, which is more sterically demanding than the two bidentate BH₄ ligands.^{16–18} The Ti–P distance of 2.625(2) Å for the PEt₃ complex falls within the narrow range of 2.58 \pm 0.07 Å found for all Ti⁰, Ti^{II}, and Ti^{IV} trialkylphosphine complexes in the literature.³

The other three molecules in the asymmetric unit also adopt the same structure with one tridentate BH₄ group and two bidentate BH₄ groups.¹⁹

The PMe_2Ph complex **3** possesses a crystallographically imposed 2-fold axis that passes through the Ti atom and a

- (17) Edelstein, N. Inorg. Chem. 1981, 20, 297-299.
- (18) Rietz, R. R.; Edelstein, N. M.; Ruben, H. W.; Templeton, D. H. Inorg. Chem. 1978, 17, 658–660.
- In the asymmetric unit of Ti(BH₄)₃(PEt₃)₂ (2), molecules 2 and 4 (19)clearly have the same structure as molecule 1. For molecule 3, the hydrogen atoms of the tridentate BH4 group (centered on B7) were not readily evident in the difference map. The Ti···B7 distance is ca. 0.1 Å longer than expected for a tridentate tetrahydroborate ligand (but 0.15 Å shorter than expected for a bidentate binding mode), and we suspect that there is disorder in which B7 is a tridentate group in most of the unit cells but a bidentate group in others (either B8 or B9 would presumably be tridentate in the same unit cells, but this disorder did not interfere with locating the majority hydrogen atom positions). The P-Ti-P angle in molecule 3 refines to 170.58(7)°, a value that is considerably more obtuse than that in molecules 1, 2, or 4. We believe that this parameter is affected by the disorder in the location of the tridentate BH4 group. Consistent with this hypothesis, the equivalent isotropic displacement parameters, $U_{\rm eq}$, of the phosphorus atoms in molecule 3 are roughly twice as large as those for the phosphorus atoms in molecules 1 and 2.

Figure 2. Molecular structure of $Ti(BH_4)_3(PMe_2Ph)_2$ (**3**). Ellipsoids are drawn at the 30% probability level, except for hydrogen atoms, which are represented as arbitrarily sized spheres.

tridentate BH₄ ligand. Consequently, the three bridging hydrogen atoms of the η^3 -BH₄ ligand are disordered over two positions related by the 2-fold axis. Despite this disordering, it is clear that the structure of **3** (like **2**) contains one tridentate BH₄ group and two bidentate BH₄ groups (Figure 2). The P–Ti–P angle is 155.68(2)°, which is identical within experimental error to that seen in the PEt₃ analogue **2**. As before, the bidentate Ti····B(η^2) distances of 2.450(2) Å are longer than the tridentate Ti····B(η^3) distance of 2.195(3) Å by 0.255 Å. As seen in the structure of **2**, the B(η^2)–Ti–B(η^3) angle of 119.24(4)° is more acute than the B(η^2)–Ti–B(η^2) angle of 121.52(8)°.

The structures of 2 and 3 will be compared with that of the PMe₃ analogue 1 in the Discussion section.

Synthesis and Structure of $[\text{Li}(\text{Et}_2\text{O})_2][\text{Ti}_2(\text{BH}_4)_5-(\text{PMe}_2\text{Ph})_4]$. As described above, treatment of Ti(BH₄)₃-(Et₂O)₂ with PMe₂Ph affords blue crystals of the titanium(III) complex Ti(BH₄)₃(PMe₂Ph)₂. Among the blue crystals of this species, however, are occasionally found red crystals of a minor product. This minor product is a new compound, the titanium(II) complex $[\text{Li}(\text{Et}_2\text{O})_2][\text{Ti}_2(\text{BH}_4)_5(\text{PMe}_2\text{Ph})_4]$ (4). Although we have not been able to carry out mass balance studies to establish the reaction stoichiometry, this complex is presumably formed by reduction of **3** in the presence of LiBH₄:

2 Ti(BH₄)₃(PMe₂Ph)₂ + LiBH₄ + 2 Et₂O
$$\rightarrow$$

[Li(Et₂O)₂][Ti₂(BH₄)₅(PMe₂Ph)₄] + H₂ + 2 BH₃·PMe₂Ph
4

To date, attempts to obtain pure samples of 4 have been unsuccessful.

Crystal data for **4** are given in Table 1, whereas selected bond distances and angles are given in Table 4. The structural analysis shows that $[Li(Et_2O)_2][Ti_2(BH_4)_5(PMe_2Ph)_4]$ forms chains in the solid state, the titanium centers being linked to one another and to lithium centers by bridging BH₄ groups (Figure 3). Other one-dimensional chains are known in which metal centers are linked by means of η^2 , η^2 -BH₄ groups;³⁹

Figure 3. View of the chain structure of $[\text{Li}(\text{Et}_2\text{O})_2][\text{Ti}_2(\text{BH}_4)_5(\text{PM}_2-\text{Ph})_4]$ (4). Ellipsoids are drawn at the 30% probability level, except for hydrogen atoms, which are represented as arbitrarily sized spheres.

Figure 4. Molecular structure of the $[Ti_2(BH_4)_5(PMe_2Ph)_4]^-$ subunit of **4**. Ellipsoids are drawn at the 30% probability level, except for hydrogen atoms, which are represented as arbitrarily sized spheres.

two representative examples are $AlMe_2(BH_4)^{20}$ and $Be-(BH_4)_2$.²¹

The $[Ti_2(BH_4)_5(PMe_2Ph)_4]^-$ anion in 4 consists of two Ti- $(\eta^2-BH_4)_2(PMe_2Ph)_2$ centers linked by a bridging η^2,η^2-BH_4 group (Figure 4). The Ti···(μ -B)···Ti angle is 169.9(3)°, and the two Ti···(μ -B) distances are essentially equal and average 2.506(7) Å. If the BH₄ groups are considered to occupy one coordination site, the titanium centers each adopt trigonal bipyramidal geometries with the phosphine ligands in the axial positions. The two independent P-Ti-P angles are $176.85(7)^{\circ}$ and $171.75(6)^{\circ}$ and describe a nearly ideal linear arrangement. The two ends of the molecule are staggered with respect to one another; the dihedral angle between the two Ti_2P_2 planes is 87.72(5)°. We note here that the staggered nature of the two ends of the molecule is enforced by the tetrahedral nature of the bridging BH₄ group and by the strong electronic preference for all three BH4 groups about each metal center to orient with their bridging BH₂ units lying in the equatorial plane. Volatron has shown that a strong destabilization results if one or more of the BH4 groups in a high-spin $d^2 M(BH_4)_3 L_2$ complex are rotated so that the bound BH₂ units are orthogonal to the equatorial plane.²²

⁽²⁰⁾ Aldridge, S.; Blake, A. J.; Downs, A. J.; Gould, R. O.; Parsons, S.; Pulham, C. R. J. Chem. Soc., Dalton Trans. 1997, 1007–1012.

⁽²¹⁾ Marynick, D. S.; Lipscomb, W. N. Inorg. Chem. 1972, 11, 820–823.
(22) Lledos, A.; Duran, M.; Jean, Y.; Volatron, F. Inorg. Chem. 1991, 30, 4440–4445.

Table 4. Important Bond Lengths (Å) and Angles (deg) for [Li(Et₂O)₂][Ti₂(BH₄)₅(PMe₂Ph)₄] (4)

			Bond I	Lengths			
Ti1-P1	2.623(2)	P3-C38	1.816(6)	Ti1-H31	1.98(5)	B2-H22	1.162(14)
Ti1-P2	2.607(2)	P4-C41	1.832(5)	Ti1-H32	1.95(5)	B2-H23	1.07(2)
Ti2-P3	2.611(2)	P4-C47	1.816(6)	Ti2-H13	2.03(5)	B2-H24	1.07(2)
Ti2-P4	2.607(2)	P4-C48	1.802(5)	Ti2-H14	2.09(5)	B3-H31	1.162(14)
Ti1-B1	2.504(7)	Li-O1	1.960(11)	Ti2-H41	2.06(5)	B3-H32	1.162(14)
Ti1-B2	2.500(7)	Li-O2	1.989(11)	Ti2-H42	2.05(5)	B3-H33	1.09(3)
Ti1-B3	2.471(8)	O1-C51A	1.50(2)	Ti2-H51	1.78(5)	B3-H34	1.09(3)
Ti2-B1	2.508(7)	O1-C51B	1.454(11)	Ti2-H52	2.06(6)	B4-H41	1.162(14)
Ti2-B4	2.493(7)	O1-C53	1.437(7)	P1-C11	1.840(6)	B4-H42	1.162(14)
Ti2-B5	2.498(9)	O2-C55	1.420(8)	P1-C17	1.835(6)	B4-H43	1.07(2)
Li-B2	2.566(12)	O2-C57	1.540(10)	P1-C18	1.823(6)	B4-H44	1.07(2)
Li-B4	2.465(12)	B1-H11	1.162(14)	P2-C21	1.835(6)	B5-H51	1.162(14)
Ti1-H11	2.16(5)	B1-H12	1.162(14)	P2-C27	1.811(6)	B5-H52	1.162(14)
Ti1-H12	2.13(5)	B1-H13	1.162(14)	P2-C28	1.824(6)	B5-H53	1.09(3)
Ti1-H21	2.03(5)	B1-H14	1.162(14)	P3-C31	1.843(6)	B5-H54	1.09(3)
Ti1-H22	2.00(5)	B2-H21	1.162(14)	P3-C37	1.798(6)		
			Dond	Analaa			
D1_T;1_D2	176 85(7)	T;2_D1_U11	120(2)	Highes	54.7(10)	U22_D2_U22	107(4)
P3 - Ti2 - P4	170.85(7) 171.75(6)	$T_{12} = B_1 = H_{12}$	112(3)	H13-Ti2-H14	54.7(10)	H32_B3_H35	107(4) 116(4)
$R_{1} = T_{1} = R_{2}$	116.6(2)	$T_{12} = B_4 = H_{43}$	112(3) 129(3)	$H_{1} = T_{12} = H_{12}$	55 0(9)	H31-B3-H34	104(4)
$B^{2}-Ti1-B^{3}$	110.0(2) 119 5(2)	Ti2 = B4 = H44	125(3) 126(3)	$H_{1}^{H_{1}} H_{2}^{H_{2}} H_{51}^{H_{2}} H_{52}^{H_{52}}$	52.0(7)	H32 - R3 - H34	1104(4)
B1-Ti1-B3	117.5(2) 123.8(2)	Ti2-B5-H53	120(3)	H23-Li-H24	47(2)	H32-B3-H34	110(4) 117(4)
B1 - Ti2 - B4	1164(2)	Ti2-B5-H54	128(3)	Ti1 - P1 - C11	1225(2)	H41 - B4 - H42	110(4)
B4-Ti2-B5	1234(3)	Li = B2 = H21	142(3)	Ti1-P1-C17	1153(2)	H42 - B4 - H43	104(4)
B1-Ti2-B5	120.2(3)	Li - B2 - H22	112(3)	Ti1-P1-C18	111.9(2)	H43-B4-H41	122(4)
B2-Li-B4	111.4(4)	Li-B4-H41	133(3)	Ti1-P2-C21	116.7(2)	H41 - B4 - H44	105(4)
P1-Ti1-B1	94.0(2)	Li-B4-H42	117(3)	Ti1-P2-C27	114.5(2)	H42-B4-H44	112(4)
P1-Ti1-B2	86.3(2)	H11-B1-H12	117(4)	Ti1-P2-C28	116.1(2)	H43-B4-H44	104(4)
P1-Ti1-B3	90.6(2)	H12-B1-H13	104(4)	Ti2-P3-C31	122.4(2)	H51-B5-H52	95(4)
P2-Ti1-B1	88.6(2)	H13-B1-H11	112(3)	Ti2-P3-C37	114.0(2)	H52-B5-H53	115(5)
P2-Ti1-B2	91.0(2)	H11-B1-H14	107(3)	Ti2-P3-C38	112.2(2)	H53-B5-H51	107(5)
P2-Ti1-B3	89.5(2)	H12-B1-H14	108(4)	Ti2-P4-C41	114.8(2)	H51-B5-H54	127(5)
P3-Ti2-B1	88.6(2)	H13-B1-H14	108(4)	Ti2-P4-C47	118.5(2)	H52-B5-H54	99(4)
P3-Ti2-B4	86.0(2)	H21-B2-H22	105(4)	Ti2-P4-C48	114.2(2)	H53-B5-H54	112(5)
P3-Ti2-B5	93.3(2)	H22-B2-H23	98(4)	Ti1-B1-H13	129(3)	O1-Li-O2	120.2(5)
P4-Ti2-B1	94.0(2)	H23-B2-H21	122(4)	Ti1-B1-H14	122(3)	O1-Li-B2	109.6(5)
P4-Ti2-B4	85.8(2)	H21-B2-H24	111(4)	Ti1-B2-H23	117(3)	O1-Li-B4	106.9(5)
P4-Ti2-B5	92.1(2)	H22-B2-H24	120(4)	Ti1-B2-H24	141(3)	O2-Li-B2	107.1(5)
H11-Ti1-H12	55.1(8)	H23-B2-H24	102(4)	Ti1-B3-H33	119(3)	O2-Li-B4	101.2(4)
H21-Ti1-H22	54.2(9)	H31-B3-H32	102(4)	Ti1-B3-H34	124(3)		

The average Ti–P distance of 2.612(2) Å in **4** is comparable to that of 2.626(1) Å in the only other known titanium(II) BH₄ complex, Ti(η^2 -BH₄)₂(dmpe)₂, where dmpe is 1,2-bis(dimethylphosphino)ethane.²³ The three substituents on the phosphorus atom are oriented in a staggered fashion with respect to the three equatorial η^2 -BH₄ groups, presumably so as to minimize steric repulsions.

The three Ti···B vectors about Ti(1) describe B–Ti–B angles of $123.8(2)^\circ$, $119.5(2)^\circ$, and $116.6(2)^\circ$; the corresponding angles about Ti(2) are $123.4(3)^\circ$, $120.2(3)^\circ$, and $116.4(2)^\circ$. The Ti···B distances confirm that the BH₄ groups are bidentate¹⁷ and lie in a narrow range from 2.471(8) to 2.508(7) Å. For comparison, the Ti···B distances in Ti(η^2 -BH₄)₂(dmpe)₂ are 2.534(3) Å.

One of the tetrahydroborate groups on each Ti center bridges between Ti and an ether-coordinated Li cation, again in a η^2 , η^2 fashion. Specifically, individual [Ti₂(BH₄)₅-(PMe₂Ph)₄]⁻ units are linked together into a chain by interaction of hydrogen atoms on B2 and B4 with the lithium cations. The Ti···B···Li angles are 164.2(4)° and 171.3(4)°. The BH₄ groups that bridge between Ti and Li are nearly equidistant from these two centers: the Ti···B distances to these bridging BH₄ groups lie between 2.49(1) and 2.50(1)

(23) Jensen, J. A.; Girolami, G. S. Inorg. Chem. 1989, 28, 2107-2113.

Å, and the Li····B distances lie between 2.46(1) and 2.57(1) Å. The Ti····B distances to the terminal BH₄ groups of 2.47-(1) and 2.50(1) Å are comparable to those seen for the bridging BH₄ groups.

Hydrogen atoms bound to boron were readily apparent in the difference maps. For the BH₄ group that bridges between titanium centers, the Ti-H distance of 2.15(5) Å is slightly longer than for the 'terminal' BH₄ groups, which are equal within error at 2.02(5) and 1.97(5) Å, respectively. (All terminal B-H bond distances were constrained to be equal, all titanium-bridging B-H bond distances were constrained to be equal, and all lithium-bridging B-H bonds were constrained to be equal.) The titanium-bridging hydrogen atoms refined to positions 1.16(1) Å from the attached boron atoms. The B-H distances for the lithium-bridging hydrogen atoms on B2 and B4, and for the nonbridging hydrogen atoms on B3 and B5, were essentially equal at 1.07(2) and 1.09(3) Å, respectively.

The geometry about the titanium(II) centers in **4** is very similar to that seen in the vanadium(III) complex $V(BH_4)_3$ -(PMe₃)₂.²⁴ The similarities between the structures are not surprising in view of the fact that $[Ti(BH_4)_3(PR_3)_2]^-$ and $V(BH_4)_3(PR_3)_2$ both have d² valence shell electron configura-

⁽²⁴⁾ Jensen, J. A.; Girolami, G. S. Inorg. Chem. 1989, 28, 2114-2119.

Titanium Tetrahydroborates

tions and, thus, are isoelectronic.²⁵ In both molecules, the five ligands describe a very regular trigonal bipyramidal structure, the P–M–P angle is essentially linear, and the three equatorial BH₄ groups are all bidentate and describe B–M–B angles that are very close to 120°. The V–P distance of 2.510(1) Å is shorter than the average Ti–P distance of 2.612(2) Å seen in **4**, and the V–B distance of 2.365(6) Å is also shorter than the average Ti–B distance of 2.496(8) Å in **4**. These differences reflect the smaller ionic radius of vanadium(III) relative to titanium(II).

Discussion

1. Reformulation of the Structure of $Ti(BH_4)_3(PR_3)_2$ Complexes. A previous study of the crystal structure of the titanium(III) tetrahydroborate $Ti(BH_4)_3(PMe_3)_2$ (1) suggested that two of the BH₄ groups in each molecule were coordinated in an unprecedented side-on fashion, whereas the third BH₄ group was bidentate. The Ti···B distances to the two side-on BH₄ ligands of 2.27(1) Å were intermediate between that of 2.40(1) Å for the bidentate BH₄ group and that of 2.20 Å expected for a tridentate BH₄ ligand bound to Ti. In later work, Volatron and co-workers carried out an ab initio study of the structure of $Ti(BH_4)_3(PMe_3)_2$.¹² Interestingly, they found that the side-on structure was not the ground state and that instead the lowest-energy geometry was one in which two of the BH₄ groups were bidentate and one was tridentate.

The findings of Volatron and co-workers (and our adoption of new methods that permit collecting diffraction data from thermally and air-sensitive solids) prompted us to carry out the present reinvestigation of these $Ti(BH_4)_3(PR_3)_2$ molecules. Our current crystallographic studies of $Ti(BH_4)_3(PEt_3)_2$ (2) and $Ti(BH_4)_3(PMe_2Ph)_2$ (3) clearly are consistent with the ab initio results and disagree with our previous suggestion that the structure of the PMe₃ analogue 1 contains side-on BH₄ ligands.

We can rule out the unlikely possibility that, for some reason, the PMe₃ complex is anomalous. The IR spectra of **1**, **2**, and **3** in the B–H region are essentially superimposable, and thus, we conclude (as we did in 1988) that all the complexes in this series have similar structures. We now believe that our earlier crystal structure of $Ti(BH_4)_3(PMe_3)_2$ was incorrectly interpreted and that all these species adopt structures in which one of the BH₄ groups is tridentate and two are bidentate. (From here on, we will follow the symbolism used by Volatron and co-workers and refer to this as the (2,2,3) structure, the three indices indicating the hapticities of the three BH₄ ligands.)

What, then, led to the incorrect interpretation of the crystal structure of the PMe₃ complex? At room temperature, molecules of **1** reside on crystallographic mirror planes that pass through the Ti and the two P atoms and that bisect a bidentate BH₄ ligand. The other two BH₄ groups lie off the mirror plane but are symmetry-related to one another by it. We now propose that that Ti(BH₄)₃(PMe₃) adopts a (2,2,3)

Figure 5. Disorder model for $Ti(BH_4)_3(PMe_3)_2$; the axial PMe₃ groups have been deleted for clarity. The crystallographic mirror plane is indicated by the dashed line. The disorder between the two left-most BH₄ groups across the mirror plane led to apparent hydrogen positions that deceptively resembled a "side-on" bonding mode.

structure but that the apparent mirror symmetry seen in the crystal structure at room-temperature results from the mutual *disorder* of two chemically inequivalent BH₄ groups, one bidentate and the other tridentate.

In 1988, we³ discussed this exact possibility: "The unusual bonding mode adopted by two of the tetrahydroborate ligands led us to consider whether the X-ray data could be interpreted in terms of a disordered model involving superposition of a bidentate and a tridentate BH4 geometry across the crystallographic mirror plane. Such a model might account for the short Ti-B2 contacts [to the side-on BH4 groups] as well as the somewhat elongated thermal ellipsoids (high U_{22} parameters) of the Ti and B1 atoms. However, the P1 and P2 atoms, and more importantly the B2 atoms..., possess nearly isotropic thermal parameters and do not suggest that any disorder of the side-on BH4 groups is present. Furthermore, the positions of the hydrogen atoms on B2 are not consistent with the model, since at least two of the hydrogen atoms on B2 should be within bonding distance to the titanium center, rather than the one short contact...observed. Overall, we consider that a disordered model can be rejected as inconsistent with the evidence."

We now believe that this disorder model, in fact, can account for all the crystallographic observations. As we pointed out in 1988, the elongations of the thermal ellipsoids for Ti and B1 are easily explained by such a disorder. What we did not realize in our original paper is that the nearly isotropic ellipsoids of P1, P2, and B2 also are consistent with this disorder and can be explained in the following manner: these atoms remain in relatively fixed positions, whereas Ti and B1 (which is always η^2) are disordered among two positions just off the crystallographic mirror plane (Figure 5). When the titanium center is below the mirror plane, the lower B2 atom is the site of a η^3 -BH₄ group, whereas the upper B2 atom is the site of a η^2 -BH₄ group. When the Ti center is above the mirror plane, the locations of the η^2 - and η^3 -BH₄ groups are reversed.

The result of the disorder is an apparent Ti···B2 distance that is intermediate between that of a bidentate and a tridentate BH₄ ligand, and average hydrogen atom locations that give the appearance of a side-on bonding mode. The disordering also causes the thermal ellipsoid for the titanium center (and for atom B2) to be elongated in a direction perpendicular to the mirror plane; such disordering of a metal center within a mostly ordered set of ligand atoms has been seen in a few other systems.²⁶

⁽²⁵⁾ We presume that the titanium(II) compound is high spin but have not been able to obtain it in sufficient amounts to verify this presumption.

⁽²⁶⁾ Howard, W. A.; Parkin, G.; Rheingold, A. L. *Polyhedron* **1995**, *14*, 25–44 and references therein.

This disorder makes the P–Ti–P angle appear to be some 15° larger than it is known to be in 2 and 3 (~155°). This fact can be explained in the following way. As mentioned above, the locations of the phosphorus atoms are not significantly affected by the disorder; they reside on the crystallographic mirror plane. As a result, the P···P axis also lies in this mirror plane. In contrast, the positions of the titanium atoms, which actually lie off the plane, are averaged by the disorder. The effect of the disorder is to bring the apparent Ti position into the mirror plane and closer to the P···P axis, thus making the apparent P–Ti–P angle more obtuse than it actually is.

In our 1988 paper, we noted that **1** undergoes a phase transformation at ca. -25 °C, and that the crystals diffracted poorly below this temperature.³ It is possible that, at temperatures below the -25 °C phase transition, the crystals lose their mirror symmetry; i.e., the two BH₄ ligands that at room temperature are related by the mirror plane become crystallographically inequivalent. Unfortunately, the phase transition is accompanied by loss of crystallinity, so this hypothesis cannot be verified experimentally.

2. Comparison of the Structures of $M(BH_4)_3L_2$ Complexes. As noted above, the reaction of $Ti(BH_4)_3(Et_2O)_2$ with PMe₂Ph affords two products, the titanium(III) complex Ti-(BH₄)₃(PMe₂Ph)₂ (**3**) and the titanium(II) salt [Li(Et₂O)₂][Ti₂-(BH₄)₅(PMe₂Ph)₄] (**4**), whose anion can be considered as two [Ti(BH₄)₃(PMe₂Ph)₂]⁻ units that share a BH₄ group. The titanium centers in **3** and **4** have identical ligand sets (three BH₄ groups and two PMe₂Ph ligands) but have d¹ and d² configurations, respectively. As a result, these complexes constitute an ideal system for determining the effects of electronic factors on geometry and BH₄ hapticity.

The structures of Ti(BH₄)₃(PMe₂Ph)₂, **3**, and the [Ti(BH₄)₃-(PMe₂Ph)₂]⁻ units in **4** differ in two significant ways: (1) the Ti^{III} complex has one tridentate and two bidentate BH₄ groups, whereas the Ti^{II} complex has three bidentate BH₄ ligands, and (2) the ligands about the Ti^{III} centers describe a distorted trigonal bipyramid, whereas the ligands about the Ti^{II} centers describe a nearly ideal trigonal bipyramid. The differences in the trigonal bipyramidal geometries are most clearly manifested in the P–Ti–P angles, which are 155.68-(2)° for the Ti^{III} complex **3** and 174.30(7)° for the Ti^{II} complex **4**.

The crystal structures in the present paper firmly establish a trend in the structures of $M(BH_4)_3L_2$ complexes. Specifically, there is a periodic trend that relates the nature of the metal, M, to the numbers of bidentate vs tridentate BH_4 groups: $Sc(BH_4)_3(thf)_2^{27}$ has a (2,3,3) structure, $Ti(BH_4)_3$ -(PR₃)₂ complexes have a (2,2,3) structure, and V(BH₄)₃-(PR₃)₂²³ and [$Ti(BH_4)_3(PR_3)_2$]⁻ have (2,2,2) structures. The factors that lead to this trend will be discussed in the next section.

3. Factors that Affect the Hapticity of BH_4 Groups. As has long been known, when BH_4 groups bind to transition metals as terminal ligands, the number of hydrogen atoms

that bridge to the metal can be one, two, or three.¹⁶ An important issue is what factors influence the binding mode (hapticity) of coordinated BH_4 groups. Both steric and electronic factors could play a role.

3.1. Steric Factors. For BH₄ complexes of d⁰ metal centers such as Be^{II}, Sc^{III}, Y^{III}, Zr^{IV}, Hf^{IV}, and Th^{IV}, steric factors often can explain the hapticities of the BH₄ ligands. Lobkovskii showed that the structures of such metal BH4 complexes could often be predicted from a set of constants that represent the normalized solid angles subtended by the various coordinated ligands.²⁸ The structure adopted (i.e., the relative numbers of bidentate and tridentate BH₄ groups) is the one in which the solid angle for the entire coordination sphere is filled as completely as possible by the ligands. This approach successfully explains, for example, why Be(BH₄)₂²¹ is polymeric in the solid state, each Be center being surrounded by three bidentate BH₄ groups, whereas Hf(η^3 - BH_4)₄²⁹ is monomeric with four tridentate BH_4 groups. Lobkovskii's analysis is an example of the "solid angle sum" approach,30-32 which has been applied to many different kinds of complexes besides those that contain BH₄ ligands.^{33–35}

If steric effects dominate, then higher BH₄ hapticities should be observed for metals with larger radii. Comparisons of the Ti–L distances in the Ti^{II} anion [Ti(BH₄)₃(PMe₂Ph)₂]⁻ **4** with those in the Ti^{III} compound Ti(BH₄)₃(PMe₂Ph)₂ **3** suggest that the sizes of Ti^{II} and Ti^{III} differ by roughly 0.05 Å or less, with Ti^{II} being slightly larger, as expected. The slightly larger radius for Ti^{II} should favor *higher* BH₄ hapticities based on steric grounds, yet the *opposite* trend is observed experimentally; the hapticities are higher for Ti^{III}. We conclude that the (2,2,2) structure adopted by [Ti(BH₄)₃-(PR₃)₂]⁻ vs the (2,2,3) structure adopted by Ti(BH₄)₃(PR₃)₂ cannot be rationalized on the basis of differences in the size of the metal center.

3.2. Electronic Factors. As we explained in 1988, d¹ molecules of the type $M(BH_4)_3L_2$ should be distorted away from idealized D_{3h} symmetry, owing to a Jahn–Teller effect, whereas high-spin d² complexes of this type should be perfect trigonal bipyramids.³ This prediction is in accord with the facts. The d¹ titanium(III) complexes **1**–**3** *are* distorted: the P–M–P angle deviates by some 25° from linearity and the three BH₄ ligands adopt different ligation modes, two being bidentate and one tridentate. In contrast, the high-spin d² complexes **4** and V(BH₄)₃(PMe₃)₂ possess nearly ideal

- (28) Lobkovskii, E. B. J. Struct. Chem. (Engl. Transl.) 1983, 24, 224-230
- (29) Broach, R. W.; Chuang, I.; Marks, T. J.; Williams, J. M. *Inorg. Chem.* 1983, 22, 1081–1084. Electronic factors may also play an important role in dictating the geometry of Hf(BH₄)₄: the observed tetra(trihapto) geometry can also be explained on the basis that only this structure affords an electron count of 18.
- (30) White, D.; Taverner, B. C.; Leach, P. G. L.; Coville, N. J. J. Organomet. Chem. 1994, 478, 205–211.
- (31) White, D.; Taverner, C.; Leach, P. G. L.; Coville, N. J. J. Comput. Chem. **1993**, 14, 1042–1049.
- (32) Taverner, B. C. J. Comput. Chem. 1996, 17, 1612-1623.
- (33) White, D.; Taverner, B. C.; Coville, N. J.; Wade, P. W. J. Organomet. Chem. 1995, 495, 41–51.
- (34) Fischer, R. D.; Li, X.-F. J. Less-Common Met. 1985, 112, 303-325.
- (35) Li, X.-F.; Eggers, S.; Kopf, J.; Jahn, W.; Fischer, R. D.; Apostolidis, C.; Kanellakopulos, B.; Benetollo, F.; Polo, A.; Bombieri, G. *Inorg. Chim. Acta* **1985**, *100*, 183–199.

⁽²⁷⁾ Lobkovskii, E. B.; Kravchenko, S. E.; Semenenko, K. N. J. Struct. Chem. (Engl. Trans.) 1977, 18, 312–314.

Titanium Tetrahydroborates

trigonal bipyramidal geometries with linear P-M-P angles and three bidentate BH₄ groups.

Volatron and co-workers^{12,22,36} showed that the exact hapticities of the BH₄ ligands in the series Sc(BH₄)₃(thf)₂, $Ti(BH_4)_3(PMe_3)_2$, and $V(BH_4)_3(PMe_3)_2$ could be understood in terms of the number of empty valence orbitals on the metal: nine for a d⁰ species, eight for a d¹ species, and seven for a high-spin d² species. For complexes of the type M(BH₄)₃L₂, two of these valence orbitals on each metal center are involved in metal-phosphorus bonding, leaving seven, six, and five orbitals for metal $-BH_4$ bonding in d⁰, d^1 , and high-spin d^2 species, respectively. Under the D_{3h} point group, the equatorial BH₄ ligands can form one symmetryadapted linear combination of a_2' symmetry that is purely ligand-based because none of the s, p, or d orbitals on the metal center has this symmetry. Therefore, maximal metalligand bonding for d⁰, d¹, and d² species will be achieved if the ligands are arranged so as to create eight, seven, and six symmetry-adapted linear combinations of orbitals, respectively. This condition is realized by (2,3,3), (2,2,3), and (2,2,2) arrangements of the BH₄ ligands, as is observed for Sc(BH₄)₃(thf)₂, Ti(BH₄)₃(PMe₃)₂, and V(BH₄)₃(PMe₃)₂.

The preponderance of evidence strongly suggests that electronic factors are most important in determining the structures of $M(BH_4)_3L_2$ complexes.

Experimental Section

All operations were carried out in a vacuum or under argon with standard Schlenk techniques. Solvents were distilled under nitrogen from sodium benzophenone (pentane, diethyl ether, tetrahydrofuran) immediately before use. The phosphine PMe_2Ph^{37} was prepared by a modification of a literature route; LiBH₄ (Strem) was used without purification, whereas TiCl₄ (Fisher) was distilled before use. Ti(BH₄)₃(PEt₃)₂ and Ti(BH₄)₃(PMe₂Ph)₂ were prepared as described previously.³

Bis(diethyl ether)lithium Pentakis(tetrahydroborato)tetrakis-(dimethylphenylphosphine)dititanium(II). To TiCl₄ (1.5 mL, 14 mmol) in diethyl ether (200 mL) at 25 °C was added dropwise a solution of LiBH₄ (1.27 g, 58.3 mmol) in diethyl ether (50 mL). After the addition was complete, the solution was stirred for an additional 2 h. The dark blue-green solution was filtered and concentrated to 50 mL. After the solution was cooled to -78 °C, PMe₂Ph was added, causing the solution to turn bright blue. The solution was stirred for 1 h and then warmed to room temperature. The solution was filtered, and pentane (40 mL) was layered on top. Cooling the layered solution to -20 °C afforded a crop of blue crystals of Ti(BH₄)₃(PMe₂Ph)₂ that contained a few red crystals of the title compound. The crystals were washed with pentane and dried under vacuum. Attempts to obtain large amounts of the red titanium(II) compound free of the blue crystals of the titanium(III) compound were unsuccessful.

Crystallographic Studies.³⁸ Single crystals of $Ti(BH_4)_3(PEt_3)_2$ (2), grown by layering pentane on a diethyl ether solution, were

- (38) For details of the crystallographic methods used, see Brumaghim, J. L.; Priepot, J. G.; Girolami, G. S. Organometallics, 1999, 18, 2139– 2144.
- (39) For other examples of bridging BH₄ groups, see Xu, Z.; Lin, Z. Coord. Chem. Rev. 1996, 156, 139–162.

mounted on glass fibers with Paratone-N oil (Exxon) and immediately cooled to -75 °C in a cold nitrogen gas stream on the diffractometer. Single crystals of Ti(BH₄)₃(PMe₂Ph)₂ (3) and [Li-(Et₂O)₂][Ti₂(BH₄)₅(PMe₂Ph)₄] (**4**), grown by layering pentane on diethyl ether solutions were treated similarly. Data for 2-4 were collected on an area detector, and the measured intensities were reduced to structure factor amplitudes and their esd's by correction for background and Lorentz and polarization effects. Although corrections for crystal decay were unnecessary, face-indexed absorption corrections were applied. Systematically absent reflections were deleted, and symmetry-equivalent reflections were averaged to yield the sets of unique data. All structures were solved using direct methods (SHELXTL). For 3 and 4, the correct positions for all of the non-hydrogen atoms were deduced from an E-map. For 2, subsequent least-squares refinement and difference Fourier calculations revealed the positions of the remaining non-hydrogen atoms. The analytical approximations to the scattering factors were used, and all structure factors were corrected for both real and imaginary components of anomalous dispersion. For 3, hydrogen atoms were refined with independent isotropic displacement parameters; for 2 and 4, the displacement parameters for all hydrogen atoms were set equal to a multiple of U_{eq} for the attached non-hydrogen atom (the multiplier was 1.5 for methyl and BH₄ hydrogens, and 1.2 for methylene and aromatic hydrogens). Successful convergence was indicated by the maximum shift/error of 0.001 for the last cycle. Final refinement parameters for 2-4are given in Table 1. Subsequent discussions for 2-4 will be divided into individual paragraphs.

2. The triclinic cell parameters narrowed the choice of space groups to P1 and P1; the latter was more consistent with the average values of the normalized structure factors and was proven to be correct by successful refinement of the proposed model. One reflection (1 1 1) was a statistical outlier and was deleted, and the remaining 19731 unique data were used in the least-squares refinement. Several ethyl carbon atoms were disordered over two sites; the site occupancy factors were constrained to add to unity, and the P-C and C-C bond distances involving disordered atoms were restrained to idealized values. The quantity minimized by the least-squares program was $\Sigma w (F_0^2 - F_c^2)^2$, where $w = \{ [\sigma(F_0^2)]^2 \}$ $+ (0.110P)^{2}^{-1}$ and $P = (F_{o}^{2} + 2F_{c}^{2})/3$. In the final cycle of leastsquares, anisotropic displacement factors were refined for the ordered non-hydrogen atoms; disordered carbon atoms were refined isotropically with a common displacement factor. Hydrogen atoms on the ethyl groups were fixed in idealized positions with C-H =0.99 and 0.98 Å for methylene and methyl hydrogen, respectively. Hydrogen atoms in all of the BH₄ groups (except those attached to B7) were easily located in the difference maps. The B-H distances within each BH₄ unit were restrained to be equal to within a standard deviation of 0.03 Å; the H···H distances within each BH₄ unit were similarly restrained. The largest peak in the final Fourier difference map (0.66 Å e^{-3}) was located 0.95 Å from Ti4. A final analysis of variance between observed and calculated structure factors showed no apparent errors.

3. The systematic absences, *hkl* $(h + k \neq 2n)$ and *h0l* $(l \neq 2n)$, were consistent with the monoclinic space groups *Cc* and *C2/c*; the latter was chosen from an analysis of the average values of the normalized structure factors and was proven correct by the success of the subsequent refinement. 2631 unique data were used in the least-squares refinement. The quantity refined by the least-squares refinement was $\Sigma w (F_o^2 - F_c^2)^2$, where $w = \{[\sigma(F_o^2)]^2 + (0.0418P)^2 + 0.151P\}^{-1}$ and $P = (F_o^2 + 2F_c^2)/3$. All non-hydrogen atoms were assigned independent isotropic displacement parameters. Hydrogen atoms were readily apparent in the difference maps, and

⁽³⁶⁾ Lledos, A.; Duran, M.; Jean, Y.; Volatron, F. Bull. Soc. Chim. Fr. 1992, 129, 216–220.

⁽³⁷⁾ Frajerman, C.; Meunier, B. Inorg. Synth. 1983, 22, 133-135.

Goedde and Girolami

their locations were refined freely, except that the B–H distances involving the three bridging H atoms attached to B2 (which are disordered over two positions related by the 2-fold axis that passes through Ti and B2) were constrained to be equal. The largest nine peaks in the final Fourier difference map (0.15–0.25 e Å⁻³) were located near the midpoints of bonds and were clearly assignable to valence electron density. A final analysis of variance between observed and calculated structure factors showed no apparent errors.

4. The systematic absences, *h*0*l* (*l* ≠ 2*n*) and 0*k*0 (*k* ≠ 2*n*), were only consistent with the monoclinic space group *P*2₁/*c*. Five reflections, −1 2 1, 0 0 2, 1 0 0, 0 1 1, and 1 1 2, were statistical outliers and were deleted; the remaining 12728 unique data were used in the least-squares refinement. One of the ethyl groups of a diethyl ether molecule was disordered over two sites, the major site having an occupancy factor that refined to 0.684(10). The quantity minimized by the least-squares program was $\Sigma w(F_o^2 - F_c^2)^2$, where $w = \{[\sigma(F_o^2)]^2 + (0.0496P)^2\}^{-1}$ and $P = (F_o^2 + 2F_c^2)/3$. The C−O, C−C, and O···C distances within the two conformers of the disordered ethyl group were constrained to be similar. Hydrogen atoms on the diethyl ether and phosphine ligands were fixed in "idealized" positions (methyl hydrogens were optimized by rotation about the C−X axis) with C−H = 0.98 Å for the methyl

hydrogens, 0.99 Å for the methylene hydrogens, and 0.95 Å for the aromatic hydrogens. Hydrogen atoms on the BH₄ groups were readily apparent in the difference maps, and their locations were refined subject to the following constraints: all terminal B–H bond distances were constrained to be similar, all titanium-bridging B–H bond distances were constrained to be equal, and all lithium-bridging B–H bonds were constrained to be equal. The largest peak in the final Fourier difference map (0.44 e Å⁻³) was located 0.44 Å from C51A, a carbon atom in the disordered ethyl group. A final analysis of variance between observed and calculated structure factors showed no apparent errors.

Acknowledgment. This research was supported in part by a grant from the National Science Foundation (CHE00-76061). We thank Dr. Scott Wilson and Ms. Teresa Wieckowska-Prussak for collecting the X-ray diffraction data.

Supporting Information Available: X-ray structural data for 2–4 in CIF format. This material is available free of charge via the Internet at http://pubs.acs.org.

IC051556W